Please visit our sponsors:

  • 01 Apr 2018 12:00 PM | Anonymous

    We have just completed a successful Board Meeting at the Coeur d’Alene Resort where the 2018 IAC will be held. The venue is a perfect location for the conference with all of the amenities necessary to make the conference successful. Beginning January 1 of this year, Ed Pohl and Heather Nachtmann assumed the role of Co-Editors for the Engineering Management Journal (EMJ). They have just released for your reading pleasure, Volume 30, Issue 1 of the Journal. I would like to personally thank Toni Doolen and Eileen Van Aken for their dedicated service to the EMJ over the years as Co-Editors and their role in facilitating a smooth transition of the EMJ to Heather and Ed.

    The Board continues to be visible and actively engaged in various activities such as joining the Society of Women Engineers and other professional societies in sponsoring the fourth Annual STEM Capitol Hill Day. ASEM also welcomed the institution of a new student chapter at the University of South Florida.

    Just a reminder! We continue to have opportunities to serve the society and continue to solicit assistance from the membership. I am excited that Elizabeth Gibson yielded to the call of service and has been elected the new South West (SW) Regional Director, replacing Christy Bozic. I would like to thank Christy for her service during previous years.

    Enjoy the newsletter and make plans to attend the 2018 IAC.

  • 28 Mar 2018 12:00 PM | Anonymous

    by TA Jurgens-Kowal, PhD, CPEM
    (Blog #3 EMBOK series)

    Business savvy engineers are found at all levels within an organization.  Last month, we learned that engineering managers are charged with planning and organizing work, allocating resources, and directing and controlling work activities.  In this post, we will drill down into the management skills, tools, and philosophies that a business savvy engineer needs to lead, direct, and organize resources effectively.

    In Chapter 2 of the EMBOK, we are introduced to the Integrated Management Model.  The external environment is made up of customers, competitors, suppliers, vendors, and regulatory agencies.  The internal environment, on the other hand, includes all of the company’s staff, assets, and special capabilities.  We’ll dig deeper into the management systems, organization structures, and people orientations at the heart of the integrated management model.

    Management Theories

    Most leadership training programs today fully endorse the idea of motivation over punishment of workers.  You know the old adage that you get more with a carrot than a stick.  Thus, it is helpful for business savvy engineers to be familiar with the major philosophies and teachings regarding motivation.

    First, Douglas McGregor proposed that managers make assumptions about workers which translate into behaviors.  Theory X is one in which managers assume workers are lazy, would rather be doing something else, and all they are about is their paycheck.  Theory Y managers, instead, assume workers are dedicated to the organizational goals and will act in ways to achieve these objectives.  Fortunately or unfortunately, our expectations often result in the outcome we support.

    Next, Frederick Herzberg proposed that a manager can motivate workers to higher levels of performance through a two-factor model.  He identified minimal elements of a job that must be present to prevent worker dissatisfaction.  These are called hygiene factors and include safe working conditions, relationships with supervisors, and fair pay.

    While Herzberg identified that the presence of hygiene factors prevents dissatisfaction, these elements do not motivate workers to higher levels of performance.  In contrast, motivating factors are often the least expensive for a firm to provide and will yield higher dedication to organizational goals.  These motivators include recognition, advancement, and responsibility.

    Finally, psychologist BF Skinner’s behavioral research demonstrates that behavior that is rewarded will be repeated while behaviors that are ignored will be extinguished.  When leaders combine McGregor and Herzberg’s motivational theories with Skinner’s Operant Conditioning Theory, we - as leaders - are empowered to improve working environments for engineering and knowledge workers.  We also learn about ourselves and can improve our own management skills.

    Organizational Structures

    Business savvy engineers innately understand that cross-functional teams improve the effectiveness and efficiency in achieving project objectives.  Henry Mintzberg identified five basic organizational structures composed of the operating core, middle managers, upper management (called the “strategic apex”), technical support, and traditional support functions.  The relative power, influence, and concentration of these groups determines the speed of decision-making in an organization. 

    The organizational structure must align with the firm’s strategic objectives in order to deliver long-term value.  Team structures may change with the maturity of an organization and/or the complexity of the project work as well.

    People Orientation

    Of course, no project or engineering work is done without people.  Business savvy engineers will recognize that they will need to adjust their leadership style to suit their environment.  For example, global teams include people from both high context and low context cultures.  In a high context culture, relationships reign supreme, while task completion takes center stage in low context cultures.  Engineering managers must negotiate a balance between team member needs and work performance.

    If conflict arises, managers often act as mediators.  In this role, the engineering manager must ensure both sides are able to share their positions and s/he can negotiate an equitable outcome that allows the team to move forward.  Chapter 2 of the EMBOK presents a conflict model that illustrates the need to address issues as they arise, not allowing them to fester under the surface.  Furthermore, learning to apply conflict resolution and negotiation skills can benefit an engineering manager both inside and outside of the work environment.

    Leadership and Organizational Structure

    Chapter 2 of the EMBOK is packed with management and leadership theory that has stood the test of time.  Engineering managers bridge external and internal environments and understand their role in team motivation.  Creating the right organizational environment to empower people across all cultures leads to a satisfying and rewarding career.

    Next month, we’ll delve into the role strategy plays for an engineering manager in a leadership position.  In the meantime, if you’d like to read the previous posts in this series, click here and you can learn more about becoming a Certified Professional Engineering Manager here.

    Teresa Jurgens-Kowal is a Certified Professional Engineering Manager (CPEM) with a passion for lifelong learning helping individuals and companies achieve strategic growth through Global NP Solutions.  You can connect with Teresa on Linked In

  • 03 Mar 2018 12:00 PM | Anonymous

    As the year progresses, I continue to be excited about all the great work the ASEM Board continues to do on behalf of our members. We have accomplished many key initiatives that will continue to distinguish ASEM and provide value for the membership, which includes: The transition of the new editorial team for EMJ; update of the strategic plan and key performance indicator metrics for the Society; development of director goals that tie to performance indicators; development of EMBOK PowerPoint slides to support professional training or use in the classroom; the practice periodical continues to evolve and provide relevant information for EM practitioners; completion of a very successful conference in Huntsville; and finalized plans for upcoming conferences in Coeur d’Alene (2018) and Philadelphia (2019).

    There is plenty to look forward to this spring – and it’s not too late to get involved. There are two calls for papers with deadlines fast approaching: the deadline for the 2018 International Joint Conference in Europe is March 3, 2018; and deadline for the ASEM 2018 International Annual Conference has been extended to March 5, 2018. In all of the hustle to prepare for the conferences, don’t forget to submit your chapter and section reports and your nominations for Engineering Manager of the Year Award by the end of March.

    We have two critical leadership opportunities available and we are soliciting interested candidates. The positions are for the Associate Executive Director and the SW Regional Director. Members who are living in the South West Region can expect to see a ballot coming their way soon.

    We have a lot going on that represents many opportunities for your involvement and talent sharing.

  • 27 Feb 2018 6:00 PM | Anonymous

    By Patrick Sweet, P.Eng., MBA
    (Blog #2 EMBOK series)

    In this first installment in our series on the Engineering Management Body of Knowledge (EMBoK), we answer a fundamental question: what does an engineering manager do?

    Management is easy to see but difficult to describe. Given how hard it can be to wrap your arms around what constitutes management, nailing down a definition becomes very important. Understanding what is involved in being an effective engineering manager is critical to executing and improving your work.

    The EMBoK says that engineering management is the “art and science of planning, organizing, allocating resources, and directing and controlling activities that have a technological component.” (p. 3). In the rest of this post, I’ll dig into what all this means in a practical sense in order to help you apply it to your day-to-day work.


    Planning is the act of determining an end state you wish to see realized and determining which steps need to be taken to get to there. There are three basic levels of planning in an organization: strategic, tactical, and operational. Engineering managers, depending on where they reside in a given organization, can play a critical role in any or all three levels of planning.

    At the corporate level, the CEO and executive team craft a mission and vision for the organization. These are the foundational elements of strategic plans. These plans reflect the organization’s big picture and the long-term.

    Strategic plans get translated to tactical plans at the business unit level, where the planning gets more concrete and focuses on a shorter time horizon. If a company were to have a strategic plan to differentiate themselves through their advanced technology, for example, a corresponding tactical plan might be for a business unit to increase it’s spending on research and development.

    Finally, tactical plans are broken down into operational plans. Operational plans cover the day-to-day work that goes on in an organization. These are the plans that get down into the nitty-gritty of how work actually gets executed.


    Organizing is the part of management that has to do with providing a structure and relationships for people in an organization. These structures make it easier for people to contextualize and execute their own work. Structures help people to see where they stand in the grand scheme of things and how they should relate and interact with others.

    There are three basic organizational structures that engineering managers are likely to encounter in their organizations: functional, project-based, and matrix.

    Functional organizations are the traditional hierarchical organizations that most companies used until recently. Each branch of the organization represented a particular function, like engineering, human resources, or manufacturing. Here, the functional manager is in charge of the work that goes on within their function.

    Project-based organizations are grouped around the individual projects that the company is pursuing. Project teams are multi-functional and led by a project manager, who has autonomy over the project and its work. Project teams in an organization like this are a bit like mini-companies within the larger organization. When the project gets wrapped up, the team is disbanded.

    In matrix organizations, employees report to both a project manager and to their functional manager, creating a hybrid of the other two organizational types. This allows for everyone to have a “home” in his or her function, and for each project to have a full cross-functional complement in order to execute work.

    Allocating Resources

    Allocating resources is exactly what you might expect – assigning people, capital, or equipment to a given task. Strong engineering managers are able to allocate resources in a way that gets the job done as effectively and efficiently as possible. This is often a fairly active part of an engineering manager’s work given the dynamic and uncertain nature of the technical work that many of us do.


    Directing is composed of three related activities all geared towards helping staff get work done: motivating, supervising, and influencing. Anyone who has led a team before can tell you that simply asking the team to accomplish its goals won’t get the job done – teams need leadership in order to keep work going in the right direction. This is why leadership is so critical to engineering management. Dwight D. Eisenhower once said, “Leadership is the art of getting someone else to do something you want done because he wants to do it.” This is the essence of directing in an engineering management context.  


    Controlling is a fairly analytical component to management – one that many engineers, myself included, tend to gravitate towards. Controlling has to do with measuring performance against a pre-established baseline and taking corrective action where necessary. The real art in controlling is to decide which things to measure and when to take corrective action. With so much information available to most engineering managers, being able to cut through the fog of data to pay attention to what’s really important can be the difference between a good manager and a great one.

    Next Steps

    If you’re already an engineering manager, spend some time this week taking note of the activities I’ve mentioned above. Which ones tend to get emphasized for you? Which ones aren’t emphasized enough? If there is a significant imbalance, is that creating problems in your team or project? Try and make a conscious effort to redistribute your time and energy into the areas that may not be getting enough attention. There’s no doubt that the effort will yield positive results for both you and your team.

    Next month, Teresa Jurgens-Kowal, PhD, CPEM will tackle Domain 2 in the Engineering Management Body of Knowledge, which covers leadership and organizational management. If you’d like to read the other posts in this series, click here. You can learn more about becoming a Certified Professional Engineering Manager here.

    About Patrick Sweet

    Patrick Sweet, P.Eng., MBA is a recognized expert in engineering management and leadership with expertise in systems engineering, project management and product management. You can read more from Pat at the Engineering & Leadership blog.

  • 10 Feb 2018 12:00 PM | Anonymous

    By: Alice Squires, Washington State University, email:, Alberto Sols, University College of South-East Norway, Erika Palmer, University of Bergen

    Early Saturday morning on October 21st, the Empowering Women as Leaders in Systems Engineering (EWLSE) sponsored technical workshop Leading and Managing System and Specialty Engineers was delivered at the American Society of Engineering Management (ASEM) annual conference in sweet Huntsville, Alabama. The workshop, developed by Alberto Sols, Alice Squires, and Erika Palmer, addressed three major topics for technical managers of systems and specialty engineers: Part I) Technical Competency, Part II) Diversity and Team Building, and Part III) Processes and Policy.

    Part I results included the identification of two common roles between systems and specialty engineers: systems thinker and effective communicator. Traits associated with the systems engineer role included leadership, adaptive learner, technical breadth, knowledge management, systematic, mindfulness, and patience. Traits associated with the specialty engineer included technical knowledge, analytical skills, teamwork, accuracy, and self confidence. Results for improving traits focused on intention and commitment as well as recognition of ignorance and the desire to improve.

    Part II results included the recognition that diversity, discrimination, and expectations differ between countries, and that while age and gender are visible, mindset and values are invisible, and culture is in some ways visible and in other ways invisible. One participant raised the point “Do you want to sacrifice efficiency for effectiveness, when you communalize a model you eliminate diversity.” Pros and cons related to building diverse teams were discussed with pros including new and diversified ideas, varying experience, balance, and innovation and with cons focused on challenges with communication and what type of communication is best depending on individual preference and styles (direct versus subtle). The discussion about leveraging diversity in teams focused on the importance of openness and adaptability, matching people to what they are naturally good at while also giving them a stretch goal and providing higher opportunities for self-development, being knowledgeable of and avoiding micro-aggressions, and getting the best out of everyone, but also raised the question as to whether or not we were coming from a perspective of privilege focused on how we can leverage diversity to provide value to ‘us’. The team decided that positive goodwill, intention, authenticity, empathy, and respect from the heart were what was important and everything else (such as miswordings or potential biased actions) can be overlooked when these positive factors are clearly present. Some things we can do are ask people about needs and expectations, listen to the answers, show we care, be respectful, and, as always, lead by example.

    For Part III the group reviewed a case study and developed a Strength, Weakness, Opportunity and Threat (SWOT) matrix with recommended actions for the systems and specialty manager for the case presented. These actions, applicable to most organizations, focused on generating awareness and building demand for systems engineering in the organization, filling the gaps and areas of expertise that are missing in both the system and specialties area, and focusing on the link between training, tools, and processes.

    Interested in learning more? The outcomes of the ASEM 2017 workshop are included in the attached set of workshop slides. Enjoy!


  • 10 Feb 2018 12:00 PM | Anonymous

    Being Agile: Eleven Breakthrough Techniques to Keep You from “Waterfalling Backward” by Leslie Ekas and Scott Will.  IBM Press:  New Jersey (2014).  189 + xxiii pages.  US$34.99.

    Flexibility.  Cooperation.  Teamwork.  Collaboration.  These are all words that describe engineering managers.  These are also all words that describe agile project management.  Agile project management is an emerging practice to add efficiency and effectiveness to project execution, and many engineers and engineering managers are being asked to make their organizations more “agile”.  Moreover, the EMBOK has added a section on agile project management, acknowledging the adoption of these practices in recent years.

    “Being Agile” is a great book to help engineering managers and project team members learn tips, tricks, and new techniques in their transition from traditional project management to agile project management.  The Agile Manifesto ( was first published in 2001 to enhance software development.  Since then, many organizations have adopted agile principles, such as stand-up meetings, Kanban boards, collaborative problem-solving, and sprints, to improve project management effectiveness.  Unfortunately, many firms also struggle with this new way of doing things and despite a declaration to “be agile,” projects continue following old management styles.

    Leslie Ekas and Scott Will offer eleven specific techniques to help teams move from traditional, waterfall project management to effective, agile product development organizations.  The authors draw on their experience as practitioners and facilitators of agile transition in the software industry, particularly at IBM.  However, many of their examples can be easily adapted for tangible product development and engineering design and construction projects. 

    Each chapter is built on principles and practices in which the authors share their personal stories and experiences.  Then, they suggest some potential metrics to ensure the organization is driving forward in its quest to become more agile.  Finally, each chapter concludes with a novel, breakthrough practice to implement agile project management in your own organization and a brief chapter summary.

    For example, Chapter 1 describes the concept of “whole teams”.  Like the authors, I have found myself leading, participating in, or facilitating project teams in which all participants are not available all the time.  In a case where you need testing to verify assumptions in development or accuracy of coding, you may find that testing personnel are only available near the conclusion of your project.  When the testing is finally completed, it’s too late – and too expensive – to make changes in the product.  Often, the decision is made to launch the product anyway, leading to lower than expected sales or a backlog of bug fixes and endless quality improvement projects. 

    Instead, recommendations in “Being Agile” include acquiring a “whole team” that represents all necessary functions and for these staff to work together throughout the entire project life cycle.  Speed-to-market improves as design, coding, and testing are done simultaneously and customer feedback is timely to development decisions.  A simple metric is to track team membership from project initiation through execution and to closing and project launch.

    The idea of whole teams overlaps with concepts presented in Chapter 4, No Multitasking and Chapter 10, Agile Leadership.  Certainly, senior management must commit to the paradigm shift introduced by an agile approach.  Moreover, customers must also understand their commitment to giving time-sensitive and effective feedback on product designs.  This is also emphasized in Chapters 7 and 8.

    Agile project management is not for every company and “Being Agile” focuses on the software industry.  Even if your organization is not attempting to undergo the radical transformation that is introduced by agile management, engineering managers can learn from this book.  In traditional staged and gated project management, teams should collaborate more and test ideas with customers frequently.  Multitasking is a burden to any technical personnel and eliminating waste (Chapter 5) is a key concept to improve quality across the spectra of industry practitioners. 

    “Being Agile” is recommended for any engineer or engineering manager working in the software or computer industry.  This is also a good book for anyone transitioning to agile principles or working within traditional project management systems but with a desire to improve productivity and efficiency.  As a chemical engineer working in new product development, I admit that some of the software language bogged me down a bit; however, the concepts of moving 100% to agile practices far outweigh the few terms that were new to me.

    What is your organization’s biggest challenge to becoming agile?

    Teresa Jurgens-Kowal, PhD, PE, PMP, CPEM, NPDP
    Global NP Solutions, LLC

  • 10 Feb 2018 12:00 PM | Anonymous

    (This data reflects new and renewing Certifications and Memberships from the fourth quarter of December 2017.)

    ASEM is proud to announce our newest CPEM, Ryan Batt - ID (US)!

    The following are ASEM's latest re-certified CPEMs: Rolf Jostad - MN (US), Larry Mallak - MI (US), Michael O'Connor - MI (US) and Ed Pohl - AR (US)

    Interested in certification? The ASEM website has all the details, here:

    ASEM welcomes our new and renewing Academic Partners:

    Pire Adrien - Belgium

    Pieter Baeyens - Belgium

    Ryan Leemans - NY (US)

    Isaac Manderyck - Belgium

    United States Military Academy - NY (US)

    Alban Mockel - Belgium

    Sam Peeters - Belgium

    Bavo Pevernagie - Belgium

    Jonathan Pierre - Belgium

    Daniel Provaznik - NY (US)

    Justin Thomas - NY (US)

    Alexander Van Hal - Belgium

    Charles Wagner - NY (US)

    Brecht Windey - Belgium

    There is more information about becoming an Academic Partner at the ASEM website, here:

    ASEM welcomes our new and renewing Student Members:

    Rabia Almamlook - MI (US)

    Jerry Almos - WA (US)

    Carina Barbosa - Brazil

    Flamarion Batista - Brazil

    Raphael Bento - Brazil

    Andrew Biller - NM (US)

    Spencer Brom - TN (US)

    Derrick Buck - AZ (US)

    Ryan Call - ID (US)

    Sergio Campo Periago - TN (US)

    Kyle Carpenter - MD (US)

    Mario Chaita - IS (US)

    Ananya Chandra - FL (US)

    Francis Chua - CA (US)

    Chad Clawson - ID (US)

    Leonardo Coelho - Brazil

    Bobbie Cooney - TX (US)

    Wesley Croom - NV (US)

    Axel de Góes - Brazil

    Jonathan Elder - TX (US)

    Leigh Emerson - ID (US)

    Nicholas Fecteau - IN (US)

    Nathan Fletcher - WA (US)

    Javier B Franco - OK (US)

    Roberto Garcia - SD (US)

    Ahmad Khalid Haddad - MI (US)

    Alexandre Hagihara - Brazil

    Amir Hedayati - IL (US)

    Mark Hill - ID (US)

    Rabie Jaifer - Canada

    Brian Jarrell - TX (US)

    Abhishek Jiandani - CA (US)

    Kelsea Jones - (US)

    Phiwat Klomkaew - AL (US)

    Jordan Lanning - ID (US)

    Alicia Lomas - ID (US

    Dennis Miller - ID (US)

    Arun Nair - CO (US)

    Rafael Navizaga - ID (US)

    Yidan Nie IN (US)

    Sangjin Park - IN (US)

    Mayank Prajapati - MA (US)

    Natiele Rodrigues Carvalho - Brazil

    Sarang Sambharia - MN (US)

    Veronica Schrimpsher - AL (US)

    Rebecca Seidl - MD (US)

    Erick Senga - (US)

    Fumbah A. Sheriff - MN (US)

    Abdulgader Shuaib - MO (US)

    Joshi Siddesh - OR (US)

    Natasha Smith - VA (US)

    Chadd Smith - ID (US)

    Misael Soczek - Brazil

    Ethan Stanley - NJ (US)

    Ryan Stevenson - (US)

    Letrisha Taylor - OR (US)

    Matthew Tompkins - VA (US)

    Miguel Toro - VA (US)

    Kgotso Tsoai - South Africa

    Sean Wainwright - MI (US)

    Zachary Walker - ID (US)

    James Williams - TN (US)

    Jun Zhao - ID (US)

    Fabio Zilli - Brazil

    H. Zondi - South Africa

    Are you a student and seeking ASEM membership? There is more information at the website, here:

    ASEM welcomes our new and renewing Professional Members:

    Wolday Abrha - TN (US)

    Roger Allman - IL (US)

    Ronald Barca - OR (US)

    Roderick Boyer - GA (US)

    Collin Broglie - TX (US)

    Dale Callahan - AL (US)

    Sorin Cohn - Canada

    Demian Cooper - MI (US)

    Carlos Roberto Cordova Morales - Peru

    Lawrence Curtis, Jr. - WA (US)

    Paul DaRosa - MA (US)

    Thomas Edwards - PA (US)

    Paul Gergets - IL (US)

    Amr Ibrahim - Egypt

    Nikolaj Tinggaard Jørgensen - (US)

    Gamze Karayaz - (US)

    Yiorgos Kostoulas - TN (US)

    Mary Malast - MO (US)

    Yosef Manik - Indonesia

    Debashis Mishra - India

    Belinda Misiego - Spain

    Johnny Morales - NC (US)

    Abumenre Odigie - Nigeria

    Alejandro Salado - VA (US)

    Jeff Salem - (US)

    Devis Saputra - Indonesia

    Jena Shafai Asgarpoor - NE (US)

    Robert Simons - IL (US)

    Valerie Stephens - PA (US)

    Anthony Streletz - CA (US)

    Scott Turnbow - TN (US)

    Richard Wakeland - TX (US)

    Want to become a Professional Member? You guessed it, there is more information at the ASEM website, here:

  • 01 Feb 2018 12:00 PM | Anonymous

    Happy New Year – and what a year we have ahead!

    Early planning is underway to ensure you have an enjoyable and informative Conference this year. The conference promises to have something for everyone. So don’t be left out, respond to the call for papers and share your knowledge and research.

    The board will meet in Idaho in March to engage in the annual strategic planning session to discuss ways to continue to move the society forward. If you have any suggestions you would like us to explore, feel free to contact me; I am at your disposal.

    ASEM is proud to partner with other groups to sponsor events such as:

    • SWE “Diversity and Inclusion Fuels Innovation in STEM” Capitol Hill Day and reception on Wednesday, March 14th in Washington, DC.
    • The “15th Annual Engineering Public Policy Symposium”Tuesday, April 24, 2018, in Washington, DC.
    • TEMSCON 2018, International Conference of the IEEE Technology and Engineering Management Society, June 28 - July 1, 2018, Evanston, IL.
    • International Joint Conference in Europe, July 18-20, 2018, Lisbon, Portugal, EU.

    A new year means new opportunities. The Southwest Regional Director position is available and represents a good opportunity to get involved. Possibly a new adventure awaits.

  • 27 Jan 2018 12:00 PM | Anonymous

    by TA Jurgens-Kowal, PhD, CPEM
    (Blog #1 EMBOK series)

    Not so long ago, an engineer graduated from university and went to work for a company.  He would work on various projects and programs, learning a few new skills as he advanced from junior engineer to senior engineer, and eventually to department and section manager.  As his career closed at age 55, the company rewarded the engineering manager with a gold watch and he moved onto his retirement, satisfied with his many contributions to the company he served for life.

    Today, an engineer is expected to change jobs as many as ten or twelve times in their careers.  She will need to continually update her skills to remain relevant and competitive in the workforce.  Engineers will swap between technical and managerial roles at various firms and in entrepreneurial roles before working part-time well past an average retirement age of 62.  No longer can she depend on one company and one technical track to succeed.  In today’s world, an engineer must be business savvy.

    The Business of Engineering

    Engineering managers are successful when they speak the language of business.  Engineering managers bridge the growing gap between technology specialists and financial decision-makers. Moreover, engineering managers are in growing demand as global competition heats up and technology advances at an ever-rapid rate.  In some regions of the world, like the United States, there is a growing skills gap between practicing engineers and managers just entering the workforce from university.

    So, just what is the business of engineering and how does an engineering manager differentiate herself from many qualified competitors?  Over the next several months, we will be sharing a series of posts based on A Guide to the Engineering Management Body of Knowledge (EMBOK) published by the American Society of Engineering Managers (ASEM).  The EMBOK guide condenses the skills required for a practicing technical engineer to successfully transition into an engineering management role.  Further, the EMBOK forms the basis for the Certified Professional Engineering Manager (CPEM) exam, a credential that demonstrates education, experience, and knowledge in the field of engineering management.

    Engineering Management Domains

    There are eleven (11) domains in the EMBOK; an understanding of each is necessary for an engineering manager to be business savvy in his or her career endeavors.  These domains are as follows:

    •          Domain 1 – Introduction to Engineering Management
    •          Domain 2 – Leadership and Organizational Management
    •          Domain 3 – Strategic Planning
    •          Domain 4 – Financial Resource Management
    •          Domain 5 – Project Management
    •          Domain 6 – Operations and Supply Management
    •          Domain 7 – Marketing and Sales Management in Engineering Organizations
    •          Domain 8 – Management of Technology, Research, and Development
    •          Domain 9 – Systems Engineering
    •          Domain 10 – Legal Issues in Engineering Management
    •          Domain 11 – Professional Codes of Conduct and Ethics

    Domain 1, the Introduction to Engineering Management, lays out the overarching organizational structure and roles of a manager.  Strategic issues of engineering managers are addressed in Domains 2 through 4, while tactical engineering management is discussed in Domains 5 through 10.  Ethics (Domain 11) support all the activities of engineers and engineering managers.

    Candidates for the CPEM exam should expect 200 questions covering these 11 domains.  These domains are also the focus of the International Conference.  More information about the CPEM exam can be found here and information on the conference can be found here.

    Becoming a Business Savvy Engineer

    Successful engineering managers master skills in leading people, organizing resources, and directing work.  Limited financial resources must be managed within the constraints of the organization to actively support strategic goals and objectives.  Tools and techniques that broaden technology development, enhance market segments, and improve logistics are necessary to build a sustainable operation or product portfolio.  All these business skills supplement and complement the basic engineering education we review so that we can become effective and productive managers, grow a business, and drive intriguing careers.

    Next month, look for the next post in this series as we begin an in-depth discussion of Domain 1 from the EMBOK – What is an Engineering Manager?  In the meantime, if you aren’t already registered with ASEM, you can learn more here.

  • 03 Dec 2017 12:30 PM | Anonymous
    By Engr. Jesus "Jess" N. Matias, ME, CPEM, PMP

    The National Engineering Center, the industry provider of engineering services of the University of the Philippines – College of Engineering will launch a training program in engineering management for practicing engineers this coming April to May 2018.

    The program will introduce the engineering management body of knowledge (EMBOK) of the American Society for Engineering Management (ASEM) to local industry practitioners.  Philippine companies have long sought for a framework that will equip engineers and other related professionals with competencies needed to manage organizations and highly-technical processes; this new collaboration between the UP-NEC and the ASEM hopes to fulfill that need.

    The program will consist of fifty-six training hours of lectures and workshops based on the ASEM EMBOK including a simulated examination for the ASEM CPEM certification.  Satisfactory completion of all requirements, as well as a passing grade in the final examination, will earn for the program participant the “Professional Certificate in Engineering Management”, a new credential which is expected to help young practicing engineers become recognized for upper management positions.  

    Successful completers of the program will then be highly encouraged to obtain the internationally-recognized Certified Professional in Engineering Management (CPEM) credential of the ASEM.  In order to facilitate the ASEM examination process, the UP-NEC may soon seek to become an ASEM-accredited online examination proctor.  

    The program is designed and will be facilitated by Engr. Jesus N. Matias, ME, CPEM, PMP, who has more than thirty years in experience in the business of construction contracting, as well as close to twenty years in lecturing experience at the UP-NEC for various training programs related to construction project management.  He is a Certified Professional in Engineering Management (ASEM), a Project Management Professional (PMI) and a practicing mechanical engineer with technical specializations in steel construction and cost engineering.  He is also a faculty member of the Institute of Civil Engineering in UP, a co-author of a textbook in Engineering Economy and an award-winning author of books on spirituality.

    The University of the Philippines has long been considered the country’s premier educational institution and its College of Engineering is among the most renowned schools of engineering excellence, with unparalleled international credibility, producing many of the Philippines’ most respected names in academe, government and industry.


      Proud to have these Sponsors/Members

Powered by Wild Apricot Membership Software