Please visit our sponsors by clicking on banner.

Please visit our sponsors:

  • 31 Mar 2015 8:00 AM | Anonymous

    Author: Frederick "Ken" Sexe

    How much do you trust what your eyes tell you? Before you answer please take this quick test on selective attention. This video comes from the Visual Cognition Laboratory at the University of Illinois and Viscog Productions.

    A recent newsletter from a friend and colleague of mine, Gwendolyn Galsworth, at reminds me that much of what happens in an organization occurs out of plain sight yet is critical for its operation. Problems within an organization can occur when decision-makers fail to extend their solutions beyond what they see to interactions ‘hidden in plain sight’ that may hold more effective solutions. The main strength of workplace visuality is in modifying the flow of workplace tasks so that reliance on visual cognition is reduced which in turn reduces the potential for visual cognition errors such as selective attention.

    Most people do not see the gorilla in the video even though both videos had the same gorilla walking through it. Why is the gorilla not seen the first time? Because the mind filters what it sees by focusing solely on the white jerseys while ignoring everything else (and since the gorilla was the same color as the other people bouncing the basketball it was subsequently filtered out). When the video is watched the second time the mind removes the filter created by the need to count white jersey basketball player interactions.

    Two examples illustrate how selective attention can manifest itself in an engineering team. A major engineering company had an instance where a serious flaw outside the inspection criterion was constantly overlooked during inspection. The solution implemented by management was to increase inspection of the part in question by adding an inspector. Subsequent inspections increased the number of parts identified with the flaw caught but the total number of systems avoiding detection still remained high because although they were each assigned to inspect a certain thing the two inspectors did not see flaws missed by the other inspector. Engineers faced with a design flaw with a power supply in an avionics system focused solely on electrical solutions until a young mechanical engineer challenged the predominant thinking by considering it as a thermal issue. Subsequent testing resulted in identifying a way to improve cooling requiring significantly less redesign than any of the electrical solutions required.

    An individual, when faced with a problem in his immediate workplace, views the problem based on his or her perspective while ignoring any other solutions. Organizational roles in which inspection is used as the source of quality become suspect as relying solely on inspection increases the possibility that individuals responsible for inspection will overlook problems outside of their inspection criteria. This is especially true of "good" parts that may pass inspection yet may cause problems elsewhere in the design they are a part of.
    Image credit:

    Frederick (Ken) Sexe is a lifelong learner currently wrapping up his PhD in Engineering Management and Organizational Psychology at Northcentral University. His hobbies include challenging prevailing patterns of thinking that discourage new ideas while developing new ways to do things. He is currently employed as a Senior Systems Engineer at Raytheon where he is taking a career break from management to pursue his educational goals and focus on his family.

  • 24 Mar 2015 8:00 AM | Anonymous

    Author: Gene Dixon, ASEM President

    March 2015

    It was cool. Very cool. At the Alexander that is. Site of the 2015 ASEM IAC. The ASEM Board tried to meet there earlier but the country’s snow bound status made it difficult for several members to attend. Still it was cool. Not just the temperature. This is a concierge level hotel, with great spaces, great meeting rooms and a great location. Minutes from the heart of Indianapolis. Steps from great restaurants. Within eyesight of Lucas Oil Stadium, Bankers Life Fieldhouse, Victory Field, and a great museum (okay, I did pick up an Ansel Adams print there). It was cool. You should plan on joining us for the 2015 IAC, Driving Change: An Engineering Management Imperative. There is something else special about Indy...maybe I’ll think of it later.

    ASEM is pleased to have started an initial collaboration with the Chinese Academy of Engineer’s Engineering Management Division. This division is comprised of over 200 renowned Chinese engineers who are the leading thinkers in Chinese engineering management. They have over 200,000 EM students at the college level. Their flagship magazine, Frontiers of Engineering Management is a relative new publication that is published quarterly. The FEM has opportunities for authors to publish internationally. The FEM is also seeking reviewers and associate editors. This is a great added value for ASEM members to engage with EM specialists from across the globe. Several ASEM members have been invited to China for the Engineering Management International Summit Forum in Guangzhou China in May of this year. Part of this visit will include détente on furthering the relationships that are forming between ASEM and the CAE’s EMD.

    Here’s something for you. Be on the lookout for a special opportunity to get your own ASEM EMBoK.

    If you are interested in participating in any of the opportunities above, from China to Indy, please let me hear from you. I think that would be cool.

    Oh, that’s it. Indy has a quilt shop. Dearly Beloved likes that. She’ll be there in October.


  • 10 Mar 2015 8:00 AM | Anonymous

    Author: Frederick "Ken" Sexe

    I was recently reminded of how actors acting in their best interest within a system can destroy a system in a blog by Seth Godin about the Newfoundland fishing industry in 1992. Fishermen optimizing their catch without regulation resulted in overfishing and the collapse of the northern cod species that has yet to recover in a systems phenomenon known as the tragedy of the commons (incidentally, there was a brilliant paper and presentation at the ASEM International Annual Conference that explains this in detail). This example reminds us that when individual parts of a system are optimized without consideration of the other parts it can lead to destruction of the system.

    Can a system be optimized? I have posed this question to both system thinkers and those new to systems with varying answers. Systems are difficult to optimize because of two main factors: first, systems enter into a state of homeostasis in which all of the parts within the system interact with each other to reach equillibrium. The second is that feedback within a system can be delayed resulting in insufficient information to make accurate changes to a system. Effective regulation of a system therefore requires management from outside the system so that the effects of each part of the system can be understood and regulated as required once the system reaches its point of homeostasis.

    This thinking runs counter to conventional wisdom in which systems can be reduced to its individual parts and each part improved individually to improve the whole. We see this from business schools to organizations to sports teams, where emphasis is placed on maximizing each of the individual parts. This tactic leads to suboptimization, especially in complex systems (although it is true that very simple systems have the most potential for improvement by improving the parts these are the exception and not the norm as some interactions may not be observable or measureable).

    I concur that systems cannot be optimized in the traditional sense but can be optimized in a systemic sense by understanding the goal of the system and allowing the system to reach equilibrium. Waiting until the system has achieved equilibrium allows for accurate measurements within the system to understand variation between the parts. A system can be optimized (but not maximized) by understanding how each part within a system interacts with each other to perform the goal of the system and how changing the performance of the parts will affect the performance of the system as a whole. This optimization is short-lived however as environmental effects upon the system and interactions within the system constantly alter its performance. Any changes to a system must subsequently be followed by observation of the system once the system reaches equilibrium so that the long-term effects of the changes can be understood.

    This blog posting is a combination of some basic systems theory and my opinion. I am always open to learn more from others about how they view systems and how they can be optimized. I also hope that you got something valuable from this posting and that this blog encourages others to share their knowledge about with everyone.

    Frederick (Ken) Sexe is a lifelong learner currently wrapping up his PhD in Engineering Management and Organizational Psychology at Northcentral University. His hobbies include challenging prevailing patterns of thinking that discourage new ideas while developing new ways to do things. He is currently employed as a Senior Systems Engineer at Raytheon where he is taking a career break from management to pursue his educational goals and focus on his family.

  • 03 Mar 2015 7:00 AM | Anonymous

    Author: Frederick (Ken) Sexe

    Perception is important to engineering design because it links an individual’s observations to patterns of thought formed by previous experiences. Perception influences behavior that subsequently can influence decisions. No design can overcome a poor customer perception no matter how perfect it may seem without an understanding of how customer perceptions influence acceptance of the product. An effective way to include customer perceptions into a design is to increase interactions between engineers and the end user. Increasing engineering exposure to customers, especially during testing, can provide valuable insights as to how the product meets their needs. Traditional organization structures unfortunately remove engineers from direct customer interactions customer by placing responsibility for customer interaction with other departments. Engineers are also traditionally trained to focus on specifications in design and not on abstract variables where perceptions affect design.

    Two examples illustrate how product design can influence customer perceptions. A Japanese bathroom appliance manufacturing company designed a toilet using one-fourth less water than previous toilets. Sales of the new toilet lagged as the customer perceived that the toilet was less hygienic because the water visually swirled less than traditional toilets. The engineers redesigned the toilet so that the water swirled at the same rate as the older toilets after which point sales of the toilet recovered. An American laundry soap manufacturer, when they first introduced washing powder to consumers, had very disappointing sales of the product and almost discontinued the product until they learned that consumers did not believe that it was effective because no suds formed compared to laundry soap. The company redesigned the product so that suds would appear at which point the product became highly successful.

    Some companies have found success in developing methods involving customers early in product design stages as a means to not only understand how the customer will perceive the value of their product but to also find new ways to apply core technologies to customer needs. A Japanese car manufacturer once had a six-month testing period in which customers would use the new vehicle while providing recommendations to engineers. A British company entering the Indian market selling bread spread for its intended use soon realized that Indians used their product as a food additive instead. Discovering this early in the market introduction allowed the company to change the product packaging and marketing to exploit this knowledge where it has found huge success in a market previously not considered.

    Many organizations unfortunately postpone consumer testing until the final design stages and in many cases during the manufacturing phase. Increasing the distance between engineering and end users combined with late consumer testing increases the possibility that negative perceptions of the product are either never identified or are identified later requiring a more costly redesign. Reducing the time between design and understanding consumer perceptions coupled with engineer training on how to interpret and apply these perceptions to a design has the potential to both increase product acceptance and reduce costly redesign as these perceptions become manifest.
    Image Credit:

    Frederick (Ken) Sexe is a lifelong learner currently wrapping up his PhD in Engineering Management and Organizational Psychology at Northcentral University. His hobbies include challenging prevailing patterns of thinking that discourage new ideas while developing new ways to do things. He is currently employed as a Senior Systems Engineer at Raytheon where he is taking a career break from management to pursue his educational goals and focus on his family.

  • 24 Feb 2015 7:00 AM | Anonymous

    Author: Frederick "Ken" Sexe

    Systems thinking is critical to understanding how systems perform yet traditional methods of thinking often fail (or worse yet result in unintended consequences) when applied to systems. This is not intended to be a comprehensive article on systems but instead is intended to provide basic systems concepts that will hopefully provide insight for those unable to clearly understand systems. These concepts mainly derive from Russ Ackoff’s presentation to the InThinking Network on February 28, 2005 that is a valuable primer into the understanding of a system. The InThnking Network is a non-profit organization dedicated to systems thinking that has many useful resources for both novices and those expert in systems thinking.

    A system can be defined loosely as two or more components of which one or more are essential parts that interact with each other to achieve a shared goal. This definition has several important factors of which all systems rely upon. The first is that a system contains one or more essential parts of which if removed the system would be unable to achieve its goal. The second is that each part within a system interacts which each other to achieve the goal of the system. It is important to understand that no essential part can by itself perform the function of the system as a whole and that the system cannot perform its function within a larger system if an essential part is removed from the system.

    Essential parts have three factors that define them. Each essential part can affect the behavior or properties of the whole. Conversely, every subsystem within a larger system can affect the behavior or properties of the whole yet none of the subsystems can have an independent effect on the whole. This factor is important in that if the essential part is altered then the ability of the system to perform its function is impacted, possibly negatively. Therefore, it is possible to improve the performance of an essential part yet degrade the performance of the system.

    No essential part has an independent effect on the whole; each essential part instead interacts with other essential parts as a connecting set. An example of this would be the brain within the human body in that the brain is not able to think on its own but instead relies on its interactions with other subsystems within the body to perform. Nor can a subsystem perform the function, behavior, or properties of the larger system. An example of this is the human body in which no component or subsystem within the human body can live yet all of the components and subsystems interact to perform the overall function of the human body (life).

    The properties of essential parts provide several concepts important in understanding all systems. The first important concept is that the performance of a system relies on the interactions of the parts within it and not on the performance of the parts taken separately. This concept runs counter to conventional analytical thinking which attempts to gain an understanding of the whole by disassembling the parts. Analytical thinking fails to provide understanding of a system due to the fact that when a system is disassembled it no longer is able to perform it’s role; it is through a study of the interactions that true understanding of a system is gained. The second important concept is that by optimizing the parts one can inadvertently make the system worse. When parts are optimized without consideration of the interactions the ability of the other parts to interact and perform their own role relative to the function of the overall system changes. Russ Ackoff notes that you can take the best parts of all of the cars in the world and place them together and may will not even have a car; this is because each part is designed in relation to interactions with different systems and as such may not work when combined with other parts.

    It is my hope that this brief article provides some basic understanding to those who are unfamiliar with how systems work. In future submissions I may focus on other system elements and characteristics; please feel free to contact me if there are any questions you may have. I also hope that others within ASEM more knowledgeable in systems than I am expand upon these so that all members could learn from their expertise.
    Graphic Credit:

    Frederick (Ken) Sexe is a lifelong learner currently wrapping up his PhD in Engineering Management and Organizational Psychology at Northcentral University. His hobbies include challenging prevailing patterns of thinking that discourage new ideas while developing new ways to do things. He is currently employed as a Senior Systems Engineer at Raytheon where he is taking a career break from management to pursue his educational goals and focus on his family.

  • 17 Feb 2015 7:00 AM | Anonymous

    Author: Gene Dixon, ASEM President

    In the quiet mornings — I really do get to the office before anyone else — I start with a review of the paper. I’m looking for course content. Today, I found this:

    The Wall Street Journal, Monday February 2, 2015, pg R8 “Where people don’t spend enough is in personal and professional development. Books and courses to expand your thinking as a leader in your business or community. Technical courses or an advanced degree to improve your skills and competencies at work. A conference or a program that enlightens you to a new idea.” – Ted Jenkins, co-CEO and founder, oWYGen Financial.

    This was under the heading “Where are people spending too much — and not enough?” that started off discussing the categories of biggest waste in the family budget (grocery shopping and dining out). Jenkins wonders why with all the cooking shows on cable that we are so prone to dining out.

    I read the article looking for course content for the next time I teach Engineering Economy. I’m always looking for ways to personalize lessons on the time value of money. I credit Ted Eschenbach with that.

    I’ve been calling for growth, value and retention on the society level. You’ve responded. Our numbers are up. Former ASEM President Rod Grubb has taken growth, value and retention so seriously, he’s issued a personal challenge to several of us to ask people to join ASEM. I’ve asked 200 so far.

    But that article made me stop for a moment. I thought about course content dealing with life-long learning, investing in your career for technical competence, and saving for retirement (not really understood by undergrads, but I try). And then I thought, “Here is a succinct statement about growth, value and retention on a personal level that should be reflected in ASEM’s products and services that we offer to the field of engineering management. My daughter would say “DUH!” You have to know her to appreciate the candor.

    We can talk about tools, techniques and methods within all of ASEM products and services. We can sing praises of their goodness and the need for their practice. We can tell ourselves how important our work is as the voice of engineering management across the globe. We would be right.

    And we would be wrong. Wrong? It’s wrong because it is not personal. It’s the old WIIFM game. And what is in it for you? For our customers? For engineering managers? Really it is practitioner support. Our products and services are practitioner support. The research of our academics — students and faculty — is about practitioner support. EMJ is, in the end, practitioner support. More than that, we have to share, learn, and develop on a personal level. Really, each ASEM member is making a personal investment in personal value. For themselves to begin with. And that growth in personal value is a contribution to the growth of the engineering management discipline.

    ASEM - building personal value, personal growth and personal retention. For ourselves. For engineering managers. For ASEM. What do you think? Can you make it personal?

    Thank you for your personal contribution to engineering management.
    Graphic credit:

  • 09 Feb 2015 7:00 AM | Anonymous
    Professional societies exist for almost every profession in every industry. At some point in your career, the option to join a professional society will most likely be offered by a friend of colleague.

    Why join a professional society?

    When determining whether or not to join a professional society related to your career, there are several common benefits that most societies should offer:

    • Networking: Membership in a professional society gives you ready access to a national (and sometimes international) network of professionals engaged in similar professions in similar fields. Organizations often host conferences and other social events that allow you to engage with others face to face and expand your professional network.
    • Professional Development: Another main component of professional organizations is the professional development of their members. Groups often publish industry specific journals that allow members to contribute to the body of knowledge of their field and keep up to date on recent developments. Specialized training programs are also a common offering of professional organizations.
    • Career Assistance: Many professional societies cultivate industry-specific job boards that are available exclusively to members. In addition, when it comes to furthering your career, membership in a professional society can be a key indicator to your employer that you are an engaged employee dedicated to your field.

    Join the preeminent society for engineering management 

    If you are a professional or academic involved in the field of engineering management, consider membership in the American Society for Engineering Management. Join today and be a part of a growing society that speaks for the engineering management profession. Visit our membership page for more information.

  • 03 Feb 2015 7:00 AM | Anonymous

    Author: Frederick "Ken: Sexe

    A recent article adding to the many about the brilliance of Steve Jobs noted that creativity requires several things lacking in some industries. Creativity, this article reminds us, requires diverse experience and a curiosity to explore new things coupled with an ability to synthesize new ideas. Why is experience and curiosity so important in creativity? And, more importantly, why do most organizations find it hard to foster these abilities?

    Imagine a barren wasteland devoid of any vegetation. Over time rain falls upon this landscape creating rivers and valleys. Over time this rain continues to fall creating areas with valleys deeper than other areas. This image is similar to how Edward deBono visualized how the mind works. The rain in this example is stimulus applied to a landscape representing the patterns of thought an individual has. One’s experiences continues to create a landscape in which stimulus prefers deeper patterns than others.

    These patterns of thought have advantages and disadvantages. The main advantage is that we are able to recall complex patterns from memory very quickly. These patterns unfortunately can work to our disadvantage by biasing us into certain patterns of thought over others. Individuals with a diverse set of experiences have in essence more patterns that are shallower than those of an individual with a limited set of experiences and much deeper patterns of thought. These patterns are also asymmetrical in nature; a good example of this is saying your ABC’s forwards and backwards. It is much easier to say your ABC’s going forward than backward as these actions actually use two different patterns rather than the same pattern forwards and backwards.

    Creativity comes when an individual is able to move from one pattern of thought to another. This results in a dominant pattern benefiting from the thinking that created another pattern. Steve Jobs benefited from his ability to apply a dominant pattern of thinking to patterns he had created with other experiences he had. Curiosity and synthesis, the other two factors Steve Jobs noted was important in creativity, encourages an individual to explore different patterns of thinking and applying these patterns to other dominant patterns to create new ideas.

    Organizations can inadvertently limit their ability to develop creativity in several ways. One critical factor occurs in the hiring process with HR and hiring managers focusing solely on requirements found in the job description. Many organizations compound this problem by not providing training on how to interview candidates for their level of potential creativity among other things. Another critical factor is policies that discourage risk taking such as goals and financial controls that discourage collaboration and risk taking across functions that could provide new ideas spawning creative new ideas. Organizations within a particular industry also tend to hire within the industry thereby limiting the availability of individuals from outside their industry that can provide creative new insights.

    There are obviously more factors to creativity and subsequent innovation than the ones included in this blog. There are also those within ASEM much more knowledgeable in creativity and innovation theory than I am. I sincerely hope that this blogs spurs some thinking that could be of value and introduce new ideas to our fellow ASEM members.
    Graphic Credit:


    Frederick (Ken) Sexe is a lifelong learner currently wrapping up his PhD in Engineering Management and Organizational Psychology at Northcentral University. His hobbies include challenging prevailing patterns of thinking that discourage new ideas while developing new ways to do things. He is currently employed as a Senior Systems Engineer at Raytheon where he is taking a career break from management to pursue his educational goals and focus on his family.

  • 20 Jan 2015 7:00 AM | Anonymous

    Author: Gene Dixon, ASEM President

    First some announcements regarding increasing the value of your ASEM membership:

    1) We are finalizing the transition to ASEM World HQ in Huntsville. I visited there January 5, 2015 and met with Angie Cornelius, ASEM Office Manager. The complex has eye appeal and provides business services approaching best in class. A spacious conference room and an ideal training/meeting facility are key features. This will be good for the growth of the organization and the increased support services will give us new opportunities to provide more member value.

    2) As you now know, the ASEM has gone to annual membership renewals. By moving to an annual basis, we will avoid the end of the year hassle for members to make sure dues are paid up. From an (engineering) management point of view, a flatter revenue stream will support improved fiscal planning.

    It keeps getting better: 

    3) Our Communications Committee is continuing the push for greater member value. Led by committee chair Brian Smith and facilitated by ASEM’s Webmaster Nate McGinnis, the process of making IAC proceedings available for members through our webpage is well under way. Take a look. Find that old proceeding. No, the one that you wrote. This is an ongoing effort so bear with us as we refine and improve how everything is listed, indexed and accessed. Still, it is more value for you.

    4) The Engineering Management Journal is getting a new publisher. We have completed negotiations with Taylor and Francis as our new publisher. This will provide greater visibility and increased availability of our flagship publications. This should help with the journal’s impact factor as well.

    Now for an encore. What would you suggest?

    Here are a couple of opportunities for you to add value, grow the society and maybe even retain members. Invite someone to join. In a push for 1000, 2000 or 5000 members, it only takes a brief discussion with a colleague. If you believe in this society, why not?

    And, what if the Indy IAC was an IAC with 500 attendees? How could that happen? What if each of us invited someone to attend the 2015 IAC? No doubt it would scare the planning committee. That would be a good scare. Just think of the headlines “The ASEM 500”.

    Growth, value, retention. Easy to remember. Easy to do - just ask someone. Easy to enjoy. Growth will give us more opportunities to add value. Added value makes it easier to find a reason to renew.

    Remember the challenge from the last eNews. Well here’s a thank you to all who shared with me your goals for 2015. You guys are good! You think big! You have in mind what is important for all of us. And you certainly know how to challenge the ASEM officers to keep things moving. Truly, I appreciate your encouragement. Now, works shoes on. Sleeves rolled up. Let’s make it happen. For you. For ASEM.

  • 13 Jan 2015 7:00 AM | Anonymous
    I've published more than a few of these blogs now, and I often wonder if the right information is being shared. There are so many ways to reach out and communicate, and the ASEM has a social presence in a number of locations. So I'll ask the question: Are You Connected to the ASEM?

    If you haven't already, consider joining the ASEM group at Facebook or Google+, on LinkedIn or 'following' ASEM on Twitter. Just like the organization itself, the ASEM's virtual presence grows with active participation.

    This week, my challenge to each of you is to explore one of the outlets.

    Visit the website and register, if you haven't already. Take a look and see what's new, such as the next scheduled webinar. It's slated to be held on January 30th at 1:00 PM CST, and it's the first in a planned series. Please, join your colleagues and learn more about "Entrepreneurship-Starting an App Company while Working 9-5."

    While you're at it, consider joining and/or posting at the ASEM group site on LinkedIn. ASEM membership is not required to join the group, which makes it a great way to learn more about the organization and answer your questions about joining "the society that speaks for the engineering management profession across the world."

    Yes, I'm showing you my bias. I'm still learning my way around Twitter and I'm always happy to 'follow' someone that already knows their way around. And while I'm not terribly active on Facebook or Google+, I know that some people prefer those sites and I'm glad that ASEM is available in those places.

    So I'll keep this a bit on the short side in the hopes that I see you 'out there.'


    Tricia Simo Kush is a recently certified Professional Engineering Manager. Her background is in Information Technology with a goal is to take her career to a higher level through Engineering Management. To her, Engineering Management is a fascinating mix of technology and business, people and process. Follow her on Twitter (@TSimoKush) or check out her profile on LinkedIn.


      Proud to have these Sponsors/Members

ASEM World Headquarters     *     200 Sparkman Drive, Suite 2     *     Huntsville, Alabama 35805

email:     *     phone: +1-256-503-8482 

Powered by Wild Apricot Membership Software